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Viscous and inviscid instabilities of a trailing vortex 
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A spectral collocation and matrix eigenvalue method is used to study the linear 
stability of the trailing line vortex model of Batchelor. For both the inviscid and 
viscous stability problem, the entire unstable region in the swirl/axial wavenumber 
parameter space is mapped out for various azimuthal wavenumbers m. In  the 
inviscid case, the non-axisymmetric perturbation with azimuthal wavenumber 
m = 1 has an unstable region of larger extent than any other, with an unusual two- 
lobed structure ; also, the location and numerical value of the maximum disturbance 
growth rate previously reported for this case are shown to be incorrect. Exploiting 
the increasingly localized structure of perturbation eigenfunctions allows accurate 
results to be obtained up to values of m more than 3 orders of magnitude larger than 
previously, and the results for the most unstable mode are in excellent agreement 
with the asymptotic theory of Leibovich & Stewartson. A viscous analysis of these 
fundamentally iiiviscid modes reveals that the critical Reynolds number at  which 
instability first occurs increases as O(m2) for m %- 1 ,  and finds the critical values of 
swirl and wavenumber, which approach limiting values as m +oo. 

In  the viscous case, the instabilities for m = 0 and 1 recently reported by Khorrami 
are found via a simplified numerical approach and the entire unstable region for each 
of these modes is mapped out over a wide range of Reynolds numbers. The critical 
Reynolds numbers for these modes are found to be 322.42 and 17.527, respectively, 
the latter having been unreported previously. The instabilities persist in the limit of 
large Reynolds number, with corresponding disturbance growth rates decreasing 
roughly as 1/Re. In addition to the primary mode, a new family of long-wave viscous 
instabilities is found for the m = 1 case. 

1. Introduction 
Owing to the frequency of its occurrence and the hazard it can present to air traffic, 

the trailing line vortex shed by an aircraft wing has been the subject of research for 
a number of years. Besides being of practical interest, the study of this problem has 
had a number of implications for the theory of motions of swirling fluids, especially 
in the study of their stability. Modern theoretical work in this area goes back to the 
work of Howard & Gupta (1962), who considered several problems involving swirling 
and stratified flows and, in particular, the general problem of the linearized stability 
of axisymmetric swirling flow subject to three-dimensional perturbations. Howard & 
Gupta derived sufficient conditions for inviscid stability of, as well as a semicircle 
theorem for, the eigenvalues corresponding to axisymmetric perturbations of various 
special cases of axisymmetric steady flow; they were, however, unable to derive any 
general stability criteria. Barston (1980) derived a semicircle theorem in the case of 
non-axisymmetric perturbations, and Leibovich & Stewartson ( 1983) found an 
improved upper bound on disturbance growth rates using an energy-type integral, as 
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well as deriving a sufficient condition for inviscid instability of axisymmetric 
columnar vortices. 

A5 none of these manipulations gives any information about the number and exact 
complex wave speeds of any unstable modes, however, one must resort to  direct 
numerical calculation. Lessen, Singh & Paillet (1974) were the first to present 
detailed numerical calculations, finding unstable inviscid eigenmodes for the trailing 
vortex model of Batchelor (1964). They used a Runge-Kutta-type scheme along with 
the asymptotic behaviour of the solutions at large and small radial distance to 
integrate the disturbance equations, finding an unstable mode for swirls less than 
roughly q = 1.5 for each negative azimuthal wavenumber m, as well as an unstable 
mode form = + 1 which was stabilized at  small swirl. They noted that the maximum 
(over q and axial wavenumber a) growth rate of the unstable mode increased 
monotonically with [mi, to m = -6, the limit of their calculations. Lessen & Paillet 
(1974) extended the inviscid analysis to  include the effects of viscosity on the 
stability of the inviscid modes, finding low critical Reynolds numbers for the first few 
of these. Leibovich & Stewartson (1983) investigated this class of unstable modes for 
negative azimuthal wavenumbers m and showed that the maximum growth rate 
asymptotes to an upper limit as (ml +a. They also developed a large-azimuthal- 
wavenumber asymptotic theory to  obtain accurate estimates of the most unstable 
eigenvalue for values of Iml of 3 and greater. They found that when the most unstable 
mode is close to neutral stability, a number of eigenmodes become asymptotically 
close. Later work by these authors (Stewartson & Leibovich 1987 ; Stewartson & 
Capell 1985) uses asymptotics to  untangle these near-neutral modes. Duck (Duck & 
Foster 1980; Duck 1986) was the first to compare calculated maximum growth rates 
for m larger than O(1) with the large-m asymptotics, going up to m = 15. 

More recently, Khorrami (1  99 1 ) has reported viscous instabilities for azimuthal 
wavenumbers of m = 0 and 1 for the trailing vortex, providing the first direct 
evidence that viscosity can have a destabilizing effect on swirling flow. These 
instabilities are of great interest both physically, since their growth rates and 
physical characteristics compare more favourably with instabilities observed in 
aircraft contrails than do the inviscid modes; and mathematically, since the 
axisymmetric mode exhibits the novel phenomenon of an unstable mode which does 
not possess a critical layer. 

The motivations for the present study are as follows: previous studies of the 
inviscid stability of the trailing vortex have not mapped out more than a small part 
of the unstable region for any azimuthal wavenumber, so a detailed ‘topography of 
instability’ is of considerable interest. The second goal is to provide a numerical 
validation of the large-azimuthal-wavenumber asymptotics of Leibovich & 
Stewartson for the most unstable inviscid mode, since previous studies provide 
numerical results only up to lml = 15. Additionally, an analysis of the effect of 
viscosity on the inviscid modes, particularly a t  larger azimuthal wavenumbers, is 
needed. Finally, a study of the topography of the viscous modes found by Khorrami, 
particularly a t  larger Reynolds numbers, is desirable, as are the critical parameters 
for the asymmetric viscous mode, which were not reported by the latter author. 

2. Inviscid analysis 
2.1. The steady ,flow 

The steady flow is the similarity solution of Batchelor (1964) for a viscous 
axisymmetric line vortex far downstream from the leading edge where it is shed. 
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Cylindrical polar coordinates (F, 8, z )  are used, with the z-axis coinciding with the 
vortex axis. In  non-dimensional form this similarity solution has radial, azimuthal 
and axial velocity components of the form 

U ( r )  = 0, V(r )  = ( q / r )  (1 -e-r2), W(r)  = W, +e-r2, (1) 

where r cc T/zi  is the similarity variable and the parameter q characterizes the swirl 
intensity of the vortex. As a consequence of Galilean invariance, the constant scaling 
in the axial velocity can be arbitrarily chosen without affecting the stability results. 
In this study W, is taken to be zero, so that the real part of any eigenvalue found 
will give the disturbance velocity relative to the uniform axial velocity of the outer 
flow. 

2.2.  Governing equations 
When infinitesimal disturbances of the form 

(.ii,V",G,@) = [ iu(r ) ,v (r ) ,  w(r ) ,p(r )]  exp {i[a(z-ct)+mB]} (2) 

(where a is the axial wavenumber, c is the disturbance phase speed and m is the 
azimuthal wavenumber) are superimposed on the steady solution and the result 
substituted into the full, time-dependent, non-dimensional inviscid equations of 
motion, the following set of linear ordinary differential disturbance equations 
results : 

u*+mv/r+aw = 0, yu+2Vv/r-p' = 0, (3a,  b )  

yv+ V*u+mp/r  = 0, yw+ W'u+ap = 0, (3c, 4 
where y = mV/r+a(W-c ) ,  ( )* = ( )'+ ( ) / r  and primes denote differentiation with 
respect to r .  Note that in the case of steady flow with non-negligible radial velocity, 
there are additional terms which appear in the three disturbance momentum 
equations ; these are included in the full viscous equations, which can be found in 
$3.1. The boundary conditions as originally derived by Batchelor & Gill (1962) are 

u = v = 0, w and p finiteif m = 0, 

u = v = w = p = O  if Iml>1, 
r = O :  u ' = u + m v = w = p = O  if Iml=l, r+w: u,v,w,p-+O. 

(3 e )  

Substituting a Taylor expansion about r = 0 of the radial and swirl disturbance 
velocities in (3a) shows that for Iml = 1, the inner boundary conditions on u and v can 
be replaced with 

1 
u'(0) = v'(0) = 0. (3f 1 

The symmetries of the stability problem have been examined by several authors 
(Lessen et al. 1974; Khorrami 1991); we only note that instead of looking a t  both 
positive and negative azimuthal wavenumbers m and non-negative swirl, we will 
consider non-negative m and let the swirl parameter q vary along the entire real line ; 
both approaches are equivalent in that they cover the entire parameter space. 

For the analysis of temporal stability, a is taken to be real and non-negative 
whereas c is complex. The above system then constitutes an eigenvalue problem for 
the eigenvalue w = ac, with the sign of the imaginary part of the eigenvalue 
determining whether the given disturbance is stable or not. If w has positive 
imaginary part, the flow is unstable and the disturbance grows exponentially with 
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time. In  the inviscid case, each unstable mode has a complex-conjugate counterpart, 
travelling with the same real wave speed, which is exponentially damped. The above 
system can be reduced to the following second-order equation in the radial 
perturbation 

where s = r z / ( m 2 + a 2 r 2 ) .  This reduction was first performed by Howard & Gupta 
(1962) and is the starting point for most analytical work on this problem. 

2.3. Numerical approach 
A spectral collocation method with Chebyshev polynomial basis function (Boyd 
1989; Gottlieb & Orszag 1977) is used for all the calculations in this study. To 
maximize the efficiency of the method it is desirable to reduce the governing 
equations to the smallest set of equations which contain the eigenvalue term y 
linearly. The Howard-Gupta reduction (4) has thus gone too far, and a different 
formulation is necessary. By eliminating the pressure term between (3b ,  d )  and 
(3c, d) ,  then using (3a) to eliminate the axial velocity perturbation from the result, 
the following set of equations in the radial and azimuthal perturbations is obtained : 

y [ au -; (u* +?)I - f (?A* + y )  + ( W U ) !  +- 2avv = 0, 
r 

y arv+- u*+- +(V*-mW)u=O. [ 3 31 
This third-order system contains the eigenvalue linearly, as desired. The inner 
boundary conditions (3e, f )  on u and v are enforced; the requirement that 
perturbations decay to zero a t  infinity is approximated by setting u = 0 a t  a finite 
outer-boundary radius R. The above equations are discretized on the interval [0, R], 
which is mapped algebraically to [ - 1,1],  with values of the basis functions and their 
derivatives a t  the collocation points calculated using the standard three-term 
recurrence relation for Chebyshev polynomials. The resulting matrix eigenvalue 
problem of the form Ax = ABx is first reduced to standard form using an algorithm 
similar to that described by Gary & Helgason (1970) ; the eigenvalues are then found 
using a complex QR algorithm (Wilkinson 1965; Golub & VanLoan 1989). 

In  the calculations, both the numerical outer-boundary radius R and number of 
basis functions per independent variable N were increased with each iteration until 
convergence of the eigenvalues to within a specific error bound was achieved. An 
example is the highly unstable case m = 1 ,  p = -0.5, a = 0.5. Using 64-bit arithmetic 
and N up to 200, the best approximation to the most unstable eigenvalue (which will 
also be referred to as the ‘ primary mode ’) is 

w1 = 0.049 7 18 649 91 7 4 + 0.202 628 101 2942i, 

all figures being significant. The eigenvalues corresponding to the second and third 
modes for this case are 

w2 = - 0.016 208888 89 + 0.105 823 189 54i, w3 = - 0.029538003 + 0.060053650i. 

Note that for these results the accuracy deteriorates as the eigenmode becomes more 
stabilized. This property appears t’o be a result of two effects. The first is due to the 
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FIGURE 1. Radial velocity perturbation eigenfunctions for the three most unstable 
modes for the case m = 1,  q = -0.5, a = 0.5. 

spurious eigenvalues arising from the discretization of the problem and affects only 
the convergence of inviscid eigenmodes. The spurious eigenvalues due to the 
discretization (which will be referred to as ‘discretization modes ’) tend to arrange 
themselves in patterns in the complex plane which resemble discrete points along 
closed curves symmetric about the real axis. Our numerical experiments reveal that 
an eigenvalue of the inviscid stability problem (when there are unstable modes 
present) will only converge if it lies outside this discretization spectrum. The general 
effect of increasing the number of basis functions is to squeeze the discretization 
spectrum closer to the real axis, hence the closer to neutral an eigenvalue is, the 
higher the resolution needed to reveal it. 

The second effect has to do with the actual structure of the eigenfunction for the 
given mode. Examination of the eigenfunctions reveals that the more unstable an 
eigenmode, the simpler its structure (using any reasonable criterion such as the 
number of zeros or inflexion points) hence the lower the number of basis functions 
needed to resolve it. The eigenfunctions corresponding to the radial velocity 
perturbation for the above three unstable modes are plotted in figure 1 to illustrate 
this behaviour - the number of zeros (at finite r )  of the first, second and third modes 
is 0, 1 and 2, respectively; the number of inflexion points is 1 ,  3 and 5.  This early 
convergence of unstable modes makes it relatively easy to ascertain that the most 
unstable mode has been found for a particular case, something which is difficult to 
do using local iterative methods, since the initial guess becomes all-important with 
the latter. 

The calculations are quite straightforward and the convergence good when the 
mode in question is not near the neutral condition. When a mode is close to neutral 
stability, the singularities in the inviscid equations associated with the presence of 
critical layers (points where y = 0) move close to the real axis and convergence of the 
eigenvalue via any numerical approach deteriorates unless extra steps are taken. In 
the case of shooting methods the contour of integration is deformed around the 
singularities associated with the desired eigenmode, a procedure described in some 
detail by Lin (1966). When using a global method one is not integrating the equations 
per se, but the deformation technique can still be used to good effect (cf. Boyd 1989). 
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FIQURE 2. Effect of contour deformation on the discretization spectrum (open symbols) around a 
marginally stabilized mode (closed symbol); m = 1 ,  q = 0.074, a = 0.63, R = 10 for both cases. 
( a )  s = 0, ( b )  s = 1. 

Since a global matrix method must in effect deal with the singularities associated 
with many modes, contour deformation is not as sharp a tool as it is when integrating 
to  find a single mode; nevertheless it is the only way to  find near-neutral or 
marginally stabilized modes. 

The contour used by Leibovich & Stewartson (1983) is the following deformation 
of the real variable r :  

F = r [ l  -is( 1 - r / R )  ~ ' ( r ) ] ,  (6) 

where the prime denotes differentiation with respect to r .  The values of the basis 
functions and their derivatives a t  the complex collocation points along this contour 
are evaluated using a complex three-term recurrence relation, and the coefficients 
due to the steady velocities are obtained from the corresponding complexification of 
the velocities in ( 1 ) .  Figure 2 (a ,  b )  demonstrates the effect of contour deformation on 
the spectrum of the case m = 1,  q = 0.074, a = 0.63, which lies just outside the 
neutral stability curve for the primary mode. Without any deformation, the 
eigenvalue corresponding to  the primary mode is inaccessible no matter how many 
basis functions are used. Figure 2 ( a )  shows the spectrum for 6 = 0, with R = 10 and 
120 basis functions per variable. Figure 2(b ) ,  the same case but with 6 = 1, shows 
that deforming the contour shifts most of the discretization spectrum below the 
real axis, revealing the marginally stabilized mode, which has eigenvalue 
w = 0.2822-0.00008i. It should also be noted that as the most unstable mode 
passes through the neutral point and becomes strictly stable, deformation of the 
contour becomes the only way to resolve it directly, but good data for marginally 
unstable cases often allow the neutral curve to be accurately extrapolated instead. 
Deforming the contour is also important in calculations where there are multiple 
unstable modes, since it allows the more stabilized of these to be revealed with a 
lower number of basis functions than would otherwise be necessary. 

2.4. Topography of the inviscid instabilities 
For azimuthal wavenumbers where an instability was found, the (q, a)-plane was 
discretized and the stability equations solved numerically a t  each point. No unstable 
modes were found for the case of axisymmetric disturbances m = 0. Of all the non- 
axisymmetric disturbances, the case of m = 1 was found to have the largest unstable 
region. This also is the only case where the unstable region crosses the axis of zero 
swirl. Contours of disturbance growth rate for this case are pictured in figure 3, with 
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4 
FIGTJRE 3. Most unstable mode for m = 1 : contours of constant disturbance growth rate 

(outermost contour is neutral curve ; spacing between contours is 0.01). 

each contour representing an increment of 0.01 and the outermost contour being the 
neutral stability curve. Lessen et al. (1974) cite the stabilization a t  small positive 
values of swirl of this mode, their numerical results showing the imaginary part of the 
complex wave speed passing smoothly through zero as the swirl becomes stronger. 
Our results indicate stabilization of this mode a t  a maximum swirl of q = +0.0739 
and a wavenumber of a = 0.63, critical values which are in good agreement with 
those found by the above authors. As q is reduced from this value, the range of 
unstable wavenumbers increases rapidly, with the non-swirling flow unstable for 
0 < a < 1.18. The unstable region has a much larger extent in the negative-swirl 
quarter plane, and this is also where the maximum disturbance growth rate occurs. 
For q decreasing from zero, long-wave disturbances are again stabilized, but the 
neutral curve continues to extend to shorter and shorter wavelengths. The shortest 
unstable wavelengths occur at  q M -0.42, where the unstable region extends very 
nearly to a = 2. Lessen et al. found a maximum growth rate of wi = 0.147 for this 
mode a t  q = -0.32, a = 0.30, which is in good agreement with the present results at 
those parameter values (wi = 0.1494), but it is clear from the figure that this is well 
away from the actual maximum of wi = 0.2424, which occurs at q = -0.458, 
a = 0.811. It is likely that the numerical approach of Lessen et al. failed to find the 
most unstable mode for parameter values near these, an error which, given their use 
of a local method, would only have become obvious had the instability been mapped 
out in detail, as it is here. 

Also evident from figure 3 is that at the origin the two branches of the neutral 
curve intersect to form a cusp, the upper branch extending to the maximum axial 
wavenumber mentioned above and the lower branch to the most negative value of 
swirl for which instability exists of q M - 1.5. The general shape of the unstable 
region is quite interesting - the level curves of disturbance growth rate form a two- 
lobed structure, with a prominent ridge separating the lobes, which intersects the 
neutral curve at roughly q = -0.7, u = 1.3 and gradually weakens and disappears in 
the interior of the unstable region. While derivatives of the complex wave speed 
might appear from this figure to  be discontinuous across this ridge, an examination 
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FIGURE 4. 
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Behaviour of the two most-unstable eigenvalues across the ‘ridge’ at fixed a = 1. 
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Behaviour of the two most-unstable eigenvalues across the ‘ridge’ at fixed a = 1. 

of the local behaviour, illustrated in figure 4 (showing real and imaginary parts of the 
eigenvalues corresponding to both the primary and secondary mode), reveals that 
eigenvalues vary smoothly there, although their first- and higher-order derivatives 
(with respect to q and a) vary quite rapidly. The real wave speed of the most-unstable 
mode varies from w, w 1.5 a t  the upper neutral point to w, x - 1 at the lower, and 
the contour of zero phase speed exactly intersects the origin, so the longest unstable 
waves travel a t  the same speed as the outer flow. 

For this azimuthal wavenumber, as many as ten unstable modes were found 
simultaneously in some regions of the parameter space by the numerical method. The 
neutral curves for the unstable modes form a nested set, with the size of the unstable 
region decreasing monotonically with increasing stabilization of the corresponding 
mode. There are two points where the neutral curves of several (perhaps all) unstable 
modes become asymptotically close - the lower neutral point a t  q x - 1.5, a w 0.54 
and the origin. The closeness of modes near the lower neutral point was postulated 
for large m in Leibovich & Stewartson (1983), and was investigated in detail in 
Stewartson & Leibovich (1987), but its occurrence a t  low values of m was not 
reported. These authors also mention a clustering of neutral curves near the upper 
neutral point, but the present study is unable to confirm this for low azimuthal 
wavenumbers by direct calculation, as the numerical quality of solutions degrades 
rapidly in this region of the parameter space. 

Contours of the growth rate for the second, third and fourth modes are presented 
in figure 5 (a-c). The ridge seen for the primary mode is also apparent here, actually 
leading to a local maximum in the growth rate, distinct from the global maximum, 
for the second mode. The location of the maximum growth rate shifts to a more 
negative swirl and lower axial wavenumber for each higher mode, behaviour 
summarized in table 1 for the five most unstable modes, the asterisks denoting the 
parameter values corresponding to the maximum instability. 
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FIGURE 5. Contours of constant growth rate for higher modes in the case m = 1 : (a) second 
mode, ( b )  third mode, (c) fourth mode. 
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FIGURE 6. Most unstable mode for m = 2:  contours of constant growth rate. 

Mode number j q: a: w;" 

1 -0.46 0.81 0.2424 
2 -0.75 0.55 0.1116 
3 -0.80 0.54 0.08046 
4 -0.82 0.53 0.06222 
5 -0.83 0.53 0.05030 

TABLE 1. Location of maximum growth rate versus the mode number for the case m = 1 

2.5. The structure of instability at higher azimuthal wavenumbers 
Contour plots of the imaginary part of the eigenvalue for the most unstable mode for 
the case m = 2 are presented in figure 6, with the ordinate in the plot being the scaled 
axial wavenumber /3 = a/m. The maximum growth rate for this mode of 0.3138 
occurs at q = -0.693, a = 0.591. The unstable region is not as large (relative to  the 
scaled parameter space) as that  for the m = 1 case cited in the previous section - the 
maximum swirl for which instability occurs is slightly greater than - 1.5 and the 
maximum unstable wavenumber /3 is a bit greater than 1.2. The unstable region 
again has a two-lobed structure, but i t  is much less pronounced than for the m = 1 
case, and shows no local ridges, appearing to be everywhere quite smooth. The modal 
structure is nested as before, with the locations for the maximum growth rates 
showing the same trend of moving to more negative swirl and lower a with increasing 
mode number. The real wave speeds for all cases with m > 1 are normalized with the 
azimuthal wavenumber as 3, = o,/m; for m = 2 , 3  varies roughly between 0.5 a t  the 
upper neutral point and -0.8 at the lower, and the contour of zero phase speed again 
intersects the origin, as in the m = 1 case. 

The unstable regions for m 2 3 are qualitatively quite similar to the m = 2 case 
and are not plotted; the interior angle of the neutral curve cusp for the most unstable 
mode decreases, albeit slowly, with increasing m and appears to approach a finite 
value as m+m. As reported in the analyses of Stewartson & Capell (1985) and 
Stewartson & Leibovich (1987), the maximum swirl and wavenumber for which 
instability occurs also asymptote to  finite values in this limit, and their results, being 
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FIGURE 7. Localization of the eigenfunctions for vn % 1 : (a) radial velocity perturbation, 

(b)  azimuthal velocity perturbation. 

specialized to near-neutral conditions, are a more reliable guide to the extent of the 
unstable region in the parameter space. These facts, taken together, indicate that the 
entire nested modal structure becomes asymptotically close in this limit, forming a 
sort of ‘onion skin’ structure. 

The analysis of the above authors also provides a clue as to why straightforward 
numerical calculation becomes difficult for large m. They observed that the 
eigenfunctions of the problem become quite localized with increasing azimuthal 
wavenumber, being essentially zero except in a small range of the radial variable, 
which led them to call these solutions ‘ring modes ’. For m % 1, this localization, along 
with the behaviour of solutions near the origin, become the key factors limiting the 
convergence of the standard numerical scheme. Since u - P - l  for small r ,  the 
eigenfunction requires a basis set with O(m) elements to approximate this behaviour. 
Using a lower-order approximation leads to oscillations in the numerical ap- 
proximation to the eigenfunction near the origin which contaminate the eigenvalues 
if their amplitude becomes sufficiently large. However, since the eigenfunction is 
essentially zero in a neighbourhood of the origin, it is unnecessary to approximate it 
there. Moving the numerical boundaries close to the critical layer to bracket the 
support of the unstable eigenfunctions (defined here as the interval where the 
amplitude of an eigenfunction is greater than some small fraction of its maximum 
value) provides a simple way of improving the accuracy of the calculation. The local 
interval is again mapped to [ - 1, 11 and the equations discretized as before, the 
boundary conditions being to set u and v to zero a t  the endpoints. With a proper 
choice of the inner and outer numerical boundary (this can be guided by eigenfunction 
plots for lower m at the same q and a), exceptionally good results can be obtained 
- six-figure accuracy or better with 30 basis functions per variable is not unusual, 
and the accuracy shows little deterioration for a large range of m. 

The localizing of the eigenfunctions about the single critical layer associated with 
each mode is illustrated in figure 7(a ,  b ) ,  where the radial and azimuthal 
eigenfunctions of the most unstable modes form = 1000 and m = 10000 are plotted. 
It is apparent that, except for a narrowing about the critical layer, the shape of the 
eigenfunctions does not change significantly with increasing m. This effect can be 
quantified by measuring the radial spacing between two distinguished points on the 
eigenfunctions (the two minima which occur just inside the decaying ‘tails’ of the 
radial eigenfunction work quite nicely) for various values of m-our numerical 
results indicate with a high degree of accuracy that this narrowing goes as m-3, which 
is in complete agreement with the asymptotic results. The growth rates of multiple 
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unstable modes coincide to O(m-r for large m ;  the real wave speeds (having been 
scaled with m-l) coincide to O(m-I). 

The results for the most unstable modes are summarized in tables 2 and 3. Table 
2 compares the numerical results of Lessen et al. for 1 < m < 6, the asymptotic 
results of Leibovich & Stewartson and the numerical results of the present study for 
azimuthal wavenumbers up to m = 40000. The excellent agreement between the 
present numerical results and the asymptotics is apparent, as is the approach to 
limiting values of both location and value of the maximum disturbance growth rate, 
which asymptotes to 0.45876, the value at infinity being extrapolated from the 
m = 20000 and m = 40000 cases. 

Table 3 presents data (at the same values of q* and a* as given in table 2) on the 
spatial localization of the eigenfunctions with increasing m, as well as the increasing 
closeness of unstable modes, illustrated with the primary and secondary mode. The 
approach of the maximum growth rate of the most-unstable mode to its limiting 
value is also presented, the difference between the value at finite m and the limiting 
value, O : ~ ( O O ) ,  vanishing as m-9. The scaled real wave speed &jY asymptotes to a 
value of roughly -0.363614. 

'4 

3. Viscous analysis 
Until quite recently, the effect of viscosity on swirling flows such as the one 

considered here had been believed to be a purely stabilizing one. Lessen & Paillet 
(1974), in their second paper on the subject, considered the full viscous linearized 
stability equations. They found that all the inviscid instabilities described in the 
previous section were stabilized with increasing viscosity, with the m = 1 case having 
a critical Reynolds number of only 13.9. No viscous instability was found by them. 
More recently, Khorrami (1991), using a spectral collocation method and outer- 
boundary radii much larger than those used by Lessen & Paillet, found viscous 
instabilities for the azimuthal wavenumbers m = O  and 1 for a wide range of 
Reynolds numbers, with disturbance growth rates that were typically orders of 
magnitude smaller than those of unstable inviscid disturbances. These instabilities 
occur in regions of the parameter space where no inviscid instabilities have been 
found, and are particularly significant because they are in good qualitative 
agreement with disturbances observed in experimental studies of aircraft contrails at 
high altitudes. As with the inviscid problem, it is desirable to map out the entire 
unstable region for these viscous instabilities a t  various values of the Reynolds 
number, and to study their behaviour in the limit of vanishing viscosity. 

3.1. Governing equations and numerical procedure 
The full equations governing the viscous stability to small perturbations of an 
axisymmetric steady flow are, using the notation of the previous section, 

u*+mv/r+aw = 0, ( 7 4  

(7b)  
i 

-((u')*-i(Uu)'+ 
Re 

( 7 4  
i 

-(v')*-iUv*+ 
Re r 

w+W'u+ap = 0, [ R e ( $  )] i -(w')*-iUw'+ y-- -+a2 
Re 
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Lessen et al. Leibovich & Stewartson Present study 

m q* p* uim !I* B* 3" 9* B* wim 

1 -0.32 0.3 0.1470 - - - -0.458 0.811 0.24244 
2 -0.70 0.6 0.3138 - - - -0.693 0.591 0.31382 
3 -0.79 0.57 0.3544 -0.845 0.536 0.346 -0.779 0.555 0.35459 
4 -0.82 0.54 0.3777 -0.856 0.532 0.373 -0.815 0.544 0.37773 
5 -0.83 0.52 0.3912 -0.865 0.531 0.390 -0.833 0.539 0.39217 
6 -0.83 0.53 0.4008 -0.862 0.531 0.400 -0.844 0.536 0.40193 

10 - - - - -0.861 0.531 0.421 52 
20 - -0.870 0.529 0.43627 

- - - ~ - -0.872 0.529 0.44599 50 - 
- - ~ -0.872 0.530 0.45006 100 - 

1000 - - -0.871 0.531 0.45610 
10000 - - -0.871 0.531 0.45792 

- - - - - -0.871 0.531 0.45834 4oOoo - 
m -  - - -0.870 0.532 0.459 -0.871 0.531 0.45876 

- ~ 

- - - ~ - 

- - 

- - - - 

- - ~ - 

TABLE 2. Comparison of location and value of the maximum growth rate for various azimuthal 
wavenumbers between the numerical results of Lessen et al., the asymptotic theory of Leibovich 
& Stewartson, and the numerical results of the present authors 

m =  10 

NA 
NA 
NA 

0.421 52 
0.36299 
0.185 1 

-0.349775 
- 0.347 894 

0.059 8 

0.1178 

0.437 5 

m=100 

0.64890 
0.84865 
6.317 

0.45006 
0.433 0 1 
0.1705 

-0.364821 1 
- 0.364 675 9 

0.1452 

0.087 0 

1.207 

m = loo00 

0.750 136 
0.756275 
6.139 

0.457920 
0.456245 
0.1675 

-0.3636139149 
-0.363613 7489 

0.1660 

0.0840 

0.0889 

m = lo00 

0.73588 
0.770 50 
6.156 

0.456 099 
0.450782 
0.1681 

-0.363 610 89 
-0.36360575 

0.1622 

0.084 1 

0.0985 

m = 40000 

0.752 129 
0.754295 
6.126 

0.458339 
0.457502 
0.1674 

- 0.363 6 13 992 67 
-0.363613971 82 

0.1668 

0.084 1 

0.0889 

TABLE 3. Asymptotic behaviour of the most-unstable inviscid modes for large m. Rows 1-3 ; spatial 
localization of the eigenfunction (R, and R, represent the locations of the two characteristic minima 
of the radial eigenfunction) ; rows 4-9 : asymptotic closeness of the primary and secondary mode 
with increasing m ;  rows 10 and 11 : approach of 0:" and (3y to their limiting values. 
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where the Reynolds number is based on the axial velocity excess of the steady flow 
and the radius of the viscous core, defined by the location of the maximum swirl 
velocity V(r) .  The boundary conditions are the same as given for the inviscid 
problem. The first evidence of instabilities of a viscous nature for the trailing vortex 
were found recently by Khorrami, who solved the full equations udng a staggered- 
grid method. The procedure used in this study is to first eliminate the pressure from 
the three momentum equations in the same fashion as for the inviscid analysis. This 
eliminates the need for a staggered grid, making the numerical solution of the 
problem straightforward. The reduced disturbance momentum equations are, 
assuming zero steady radial velocity : 

+(Wu)’+- 2a( v-- :iJ v +  ( y+- 2im2)w=0,  (8a)  
r r3 Re 

- [ ar(d)*-m ( w”+- T)] + [ y-- ie(7n;’+a2)](arv-mw) - 
Re 

+ ( v*-- fE)a ru -mWu = 0, ( 8 b )  

and along with the continuity equation (7a)  constitute a sixth-order system for the 
disturbance velocities. Note however that (8a )  is third order in the axial velocity, 
which means that an additional boundary condition is needed. Since we expect 
smoothly decaying solutions at large radius, one can simply set an additional 
derivative of w to zero a t  the outer boundary. The continuity equation can further 
be used to eliminate the axial velocity perturbation from these equations, leading to 
a seventh-order system of two equations, one of which is fourth-order in the radial 
velocity perturbation. However, as solution of the two-equation system generally 
requires a higher spectral resolution to achieve a similar accuracy, the advantage of 
having a smaller number of equations is lost. 

Although the convergence of the eigenvalues is not as rapid with increasing 
resolution as that reported for the staggered method, this is likely due to the different 
coordinate stretchings used - Khorrami, Malik & Ash (1989) use a non-uniform 
coordinate transformation which spreads the outer-boundary points apart, allowing 
large values of R to be taken with relatively few basis functions. The algebraic 
stretching, on the other hand, does nothing special with the outer parts of the mesh, 
where the clustering of points due to the cosine spacing makes little physical sense. 
A comparison of the two methods, however, shows that while the former method 
allows good results to be obtained at  lower computational costs when the Reynolds 
number is not too large (roughly within two orders of magnitude of the critical 
value), the algebraic stretching method has superior numerical properties at high 
Reynolds number, where the growth rate of the unstable viscous modes becomes 
quite small, requiring high spectral resolution for convergence. Additionally, the 
elimination of one equation in the present study reduces the order of the matrix 
eigenvalue problem for given N by 25 %. Since the number of operations for the 
global eigenvalue method scales as O(N3) ,  this reduces the work done (for the same 
number of basis functions per variable) by more than half. Finally, the fact that the 
presence of the viscous instabilities is confirmed using a different formulation 
effectively removes any doubts regarding their existence. 
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m 

1 
2 
3 
4 
5 

10 
20 
50 

100 
1000 

10000 

Lessen & Paillet 

4c  
-0.45 
-0.7 
-0.95 

P C  

0.42 
0.46 
0.54 

Re, 
13.9 
27.9 
48.2 
- 

Present study 

4, P C  Re, Rec/m2 
-0.337 0.415 13.905 - 

-0.466 0.475 26.26 6.565 
-0.515 0.479 46.91 5.2122 
-0.535 0.476 73.11 4.5694 
-0.545 0.473 105.29 4.2116 
-0.557 0.464 356.32 3.5632 
-0.558 0.460 1306.3 3.2658 
-0.553 0.457 7682.8 3.073 1 
-0.550 0.456 2.9922 x lo4 2.9922 
-0.544 0.456 2.8730 x lo6 2.8730 
-0.542 0.456 2.8376 X 10’ 2.8376 

TABLE 4. Viscous analysis of inviscid modes - critical parameters for the onset of instability 

3.2. Effects of Jinite Reynolds number on inviscid modes 
Lessen & Paillet (1974) were the first to study the effects of viscosity on the linearized 
stability of the trailing vortex. They found no modes that were viscous in nature, and 
found that the growth rates of the most-unstable inviscid modes rapidly approached 
their limiting values as the Reynolds number was increased. More recently, 
Khorrami et al. (1989) have raised questions about Lessen & Paillet’s numerical 
technique, asserting that too small an outer-boundary radius (R = 3) was used in the 
integration of the governing equations. This, along with the fact that Lessen & 
Paillet did not find the maximum inviscid instability for this case correctly, makes 
their viscous results worth checking. Accurate results for m = 1 are particularly 
important since Lessen & Paillet report that this case has the lowest critical 
Reynolds number. Using the present numerical method, we find that R = O(10) is 
sufficient to give six-figure accuracy for this case for most parameter values. The 
results for the most-unstable mode show that the location of the maximum 
disturbance growth rate in (q, a)-space shifts to smaller swirl and axial wavenumbers 
with decreasing Reynolds number. For Re < 100, the greatest instability shifts 
rapidly to lower a as viscosity stabilizes shorter-wavelength disturbances. All 
disturbances are damped below the critical Reynolds number of 13.905, the critical 
swirl and axial wavenumber being qc = -0.337 and a, = 0.415. Somewhat 
surprisingly, Re, and a, are in good agreement with Lessen & Paillet’s results, even 
though the critical value of swirl claimed by them differs substantially from the one 
found here. 

For higher azimuthal wavenumbers, the same general behaviour is seen, the most- 
unstable modes shifting to longer-wave disturbances and more weakly swirling flow 
with decreasing Reynolds numbers. The critical parameter values for m ranging from 
1 to 10000 are summarized in table 4, with the values found by Lessen & Paillet a t  
low m given for comparison. The critical swirl and axial wavenumber asymptote to 
values of q, w -0.54, Is, = 0.456 for large m, values somewhat different than those 
for the inviscid large-m disturbance modes. The results for larger m (the viscous 
computation of these modes again takes advantage of the localized nature of the 
eigenfunctions for m & 1, which occurs much as in the inviscid case) show that it is 
the ratio Re,/m2 which approaches a constant value as m +03. The quadratic growth 
of Re, with m is in agreement with an asymptotic prediction of Stewartson (1982), 
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r r 
FIQURE 8. Velocity perturbation eigenfunctions for the (a) axisymmetric viscous mode (m = 0, 
q = 1, a = 0.5, Re = 10000, o = -0.016407 1703+i 0.000184691); ( b )  asymmetric viscous mode 
(m = 1, q = 0.4, u = 0.3, Re = 2000, w = 0.0234551213+i 0.0004706980). 

and the numerical calculation gives the constant of proportionality as slightly less 
than 3, as well as finding the asymptotic values of qC and Pc. The viscous analysis thus 
demonstrates that although large-azimuthal-wavenumber modes are the most 
unstable in the strictly inviscid sense, they are also the most susceptible to the 
stabilizing action of viscosity. This means that the maximum instability of the flow 
at any finite Reynolds number (no matter how large) occurs at  finite azimuthal 
wavenumber, which is physically more sensible than the inviscid result. 

The results for low values of m of course do not address the perhaps more 
fundamental question of the validity of the steady flow profiles at  low Reynolds 
numbers; it is likely that the velocities given in (1)  are still qualitatively 
representative of the finite-Reynolds-number flow, but one would expect that a non- 
zero radial velocity U ( r , z ) ,  which for the trailing vortex scales as o(Re-1) at large 
Reynolds numbers, might become important, and that the axial and azimuthal 
velocity distributions would be modified somewhat also. A t  low Re, the assumption 
of self-similarity used in deriving (1) also becomes questionable. In any case, the 
effects of low Reynolds numbers on the structure and stability of the basic flow are 
not completely clear, and the corresponding critical parameters should thus be taken 
more as a qualitative guide to the behaviour one might expect to see in flows having 
the same general character as the one studied here. 

3.3. Viscous instabilities 
The fact that the presence of viscosity can destabilize some flows, the most notable 
cases of this being boundary-layer and parallel shear flows, has been known for over 
half a century. The effects of viscosity on the stability of swirling flows, on the other 
hand, have been much less clear, with most analytical and numerical work having 
focused on the inviscid stability problem and the few numerical results in the viscous 
case supporting the (until recently) generally held contention that viscosity acts 
purely as a stabilizing agent for swirling flows. The first direct evidence of linearly 
destabilizing perturbations of a viscous nature were reported by Khorrami (1991), 
who found both an axisymmetric and a non-axisymmetric (m = 1) instability mode 
for the trailing vortex, both with growth rates several orders of magnitude smaller 
than those of highly unstable inviscid modes. 

An important feature of these viscous instabilities is that both occur in regions of 
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Re 

322.35 
322.45 
350 
400 
600 

103 
104 
1 0 5  
lo6 

q* a* 

1.08 0.468 
1.08 0.471 
1.08 0.472 
1.07 0.464 
1.05 0.444 
0.929 0.280 
0.82 0.22 
0.40 0.18 

1.08 0.468 - 

Wirn 

-4.96 x 10-7 
2.55 x 10-7 
1 3 2  x 10-4 
4.27 x 10-4 
8.30 x 10-4 
9.03 x 10-4 
2.23 x 10-4 
2.73 x 10-5 
3.07 x 

qunstable 

- 

1.01 < q < 1.15 
0.97 < q < 1.18 
0.89 < q < 1.23 
0.83 < q < 1.26 
0.54 < q < 1.29 
0.28 < q < 1.30 
0.12 < q < 1.30 

aunstable 

- 

0.33 < a < 0.63 
0.26 < a < 0.73 
0.15 < a < 0.91 
0.08 < a < 1.06 

0 < a < 1.29 
0 < a  < 1.32 
0 < a < 1.41 

TABLE 5. Location and growth rate corresponding to maximum instability, and range of 
unstable q and a, both W.S. Reynolds number, for the axisymmetric viscous mode. 

the q-a parameter space where no inviscid instability has been found. As noted by 
Khorrami, the outer-boundary radius R required for accurate calculation of viscous 
modes is somewhat larger than for the inviscid problem ; we find R between 20 and 
50 to be sufficient except at  very low Reynolds numbers or for very long-wave 
disturbances. Real parts of the eigenfunctions for these two viscous instabilities at 
typical unstable parameter values are plotted in figure 8(a ,  b ) ,  with the maximum 
amplitude of the radial velocity perturbation normalized to unity. (In case a 
comparison of the eigenvalues corresponding to these eigenmodes with Khorrami’s 
results is desired, it should be noted that he takes W, = 1,  which adds a factor a to 
the real wave speed in his results.) 

3.4. The axisymmetric viscous mode 
Because the disturbances are axisymmetric, the sense of rotation of the basic flow 
does not affect its stability; thus only positive swirl need be considered in this case. 
Data regarding the location and growth rate of maximum instability, along with the 
range of unstable q and a, are summarized for various Reynolds numbers in table 5 .  
The flow initially becomes unstable at a Reynolds number of 322.42, with the 
unstable region growing rapidly in extent with increasing Reynolds numbers above 
the critical value. The location of maximum disturbance growth rate moves very 
little initially, but begins moving to lower swirls and axial wavenumbers fairly 
rapidly for Reynolds numbers of lo3 and greater. Contours of constant disturb- 
ance growth rate for Re = lo00 and 10000 are plotted in figures 9(a)  and 9 ( b ) ,  
with the outermost contour representing the neutral curve. For Re = 1000, the 
flow is unstable for swirl in the range 0.83 < q < 1.26 and axial wavenumbers 
0.08 < a < 1.06. The area of the unstable region for Re = 10000 is more than double 
that at the lower Reynolds number, but the maximum growth rate, which begins to 
decrease for Re S’ 900, is only a quarter as great. For Re = 10000, the flow is unstable 
for swirls in the range 0.54 < q < 1.29. The unstable region now just touches the zero- 
wavenumber axis, with unstable axial wavenumbers extending to a short-wave limit 
of roughly 1.29. The phase speeds of unstable disturbances for the latter case range 
from roughly - 0.14 at the largest unstable swirl values to zero for the smallest. The 
negative phase speed shows that y ( r )  is of one sign, indicating the absence of a critical 
layer for these disturbance modes. 

For large Reynolds numbers, the unstable region no longer expands to higher 
swirl, the large-q parts of the neutral curves for Re = lo4, lo5 and lo6 being virtually 
indistinguishable. The unstable region does, however, continue to expand to lower 
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1 (b) 

0 1  
0.5 0.7 0.9 1.1 1.3 

4 4 
FIQURE 9. Contours of constant disturbance growth rate for the axisymmetric viscous mode at 

per contour), (b) Re = 10000 (2 x (a)  Re = 1000 per contour). 

Re w 

1 0 3  -0.017417059+i8.140964 x 
104 -0.016407 170+il.846908 x 
105 -0.016382486 + il.883375 x 
1 os 
10' 

-0.016382232 +i t  .883 7.58 x lo-' 
-0.016382230 + i 1.883763 x lo-' 

TABLE 6. Axisymmetric mode eigenvalue vs. Reynolds number at fixed parameter values 
(q = 1.0, a = 0.5). 

values of swirl, the minimum q for instability for these three Reynolds numbers being 
0.54, 0.28 and 0.12, respectively. A t  a given value of q, the range of unstable 
wavenumbers appears to approach a limit with increasing Re. For q = O . 6 ,  for 
instance, the shortest unstable waves for any Reynolds number have a x 1.32. It is 
not clear at  what parameter values the shortest unstable wavelengths occur, as the 
range of unstable 01 at low swirl is still expanding for Re = lo6. It appears that once 
a point comes to lie in the unstable region, it remains there with increasing Reynolds 
number, at  least for the range of Re investigated here. The real part of the unstable 
eigenvalue at given q and a approaches a constant with increasing Reynolds 
number, but the growth rate decreases as 1/Re, behaviour which is summarized in 
table 6. All figures given in the table are significant. Neutral stability curves for this 
mode at various Reynolds numbers ranging from 350 to lo6 are plotted in figure 10. 

Whether the unstable region comes to intersect the zero-swirl axis in a finite 
interval of axial wavenumbers at large Re or merely approaches it asymptotically is 
still an open question, but the Reynolds numbers in question are clearly very large. 
No secondary mode of instability was found for Re < lo7 for the axisymmetric case, 
the only other converged modes found being strictly stable. While this does not rule 
out the possible existence of higher modes at larger Re, it  makes it less likely that 
such modes would occur in actual aircraft wakes, which do not generally have 
Reynolds numbers based on core diameter greater than O( lo'). 
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FIGURE 10. Neutral curves at various Reynolds numbers for the axisymmetric viscous mode. 

Re 

17.5 
17.6 
20 
25 
40 

100 
1000 

q* u* 

0.475 0.336 - 
0.477 0.338 
0.510 0.369 
0.535 0.404 
0.537 0.436 
0.475 0.418 
0.24 0.21 

dm 
3.07 x 10-5 
8.17 x 10-5 
2.55 x lo-' 
6.25 x lo-' 
1.06 x lo-* 
9.61 x lo-' 
1.66 x lo-' 

qunstsble aunatable 

- - 

- - 

0.26 < q < 0.70 
0.15 < a < 0.85 
0.02 < q < 0.96 

0.14 < a < 0.55 
0 < a < 0.70 
0 < a < 0.91 

O < q < 1 . 0 8  O<a< 1.13 
O < q < 1 . 0 8  O < a < 1 . 1 4  

TABLE 7.  Location and growth rate corresponding to maximum instability vs. Reynolds 
number for the asymmetric viscous mode 

3.5. The asymmetric viscous mode 

An asymmetric viscous mode of instability, first reported by Khorrami, occurs for an 
azimuthal wavenumber, m = 1, for which inviscid modes which persist to quite low 
Reynolds numbers are also seen. This viscous instability, however, exists for positive 
swirl values beyond which any inviscid mode is stabilized. Also, the character of the 
unstable region for this mode is rather different than that of its axisymmetric 
counterpart. The flow first becomes unstable with respect to these asymmetric 
perturbations at a swirl of q, = 0.475 and an axial wavenumber a, = 0.336. The 
critical Reynolds number for this mode of Re, = 17.527 is much lower than for the 
axisymmetric mode (and quite close to that of the m'= 1 inviscid mode). The 
maximum growth rates at Re = O( lo2) are an order of magnitude greater than those 
of the axisymmetric mode, but begin to decay at much lower Reynolds numbers, so 
that at large Re the axisymmetric mode would appear to be the dominant form of 
instability, at least as far as small disturbances are concerned. 

The location and value of the maximum growth rate for this mode are summarized 
in table 7 for various Reynolds numbers, as is the rough extent of the unstable region 
in the parameter space. The unstable region expands very rapidly for Re > Re,, 
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FIGURE 11. Contours of constant disturbance growth rate for the asymmetric viscous mode at (a )  
Re = 20 per contour), ( b )  Re = 100 (lW3 per cwntour), (c) Re = 1000 (2 x per contour). 

moving rapidly toward the long-wave axis a t  Reynolds numbers slightly above the 
critical value. The unstable region has a maximum extent a t  a Reynolds number of 
roughly 100, its upper part beginning to narrow for larger Re. The interval of 
unstable swirl values reaches a limit of qunstable E [0, 1.081, the upper limit being 
reached for wavenumbers which are near unity. the largest unstable swirl for long 
waves having a lower value, q x 0.83. 

Contours of constant disturbance growth rate for Reynolds numbers of 20,100 and 
1000 are plotted in figure 11 (a-c). At Re = 20, the unstable region has not yet 
reached the abscissa, but a t  Reynolds numbers which are only slightly higher, the 
lower right portion of the unstable region spreads rapidly toward lower a. For both 
higher-Reynolds-number cases the upper branch of the neutral curve proceeds 
roughly along the line given by a = 1. lq .  The maximum instability at given swirl is 
located very close to  the upper branch. the growth rate decreasing very rapidly with 
a increasing from this point. On the other, long-wave side of the ridge formed by the 
maximum instability, the growth rates quickly drop roughly an order of magnitude, 
but then decay much more slowly as the lower branch of the neutral curve is 
approached. The phase speeds of unstable disturbance waves range from about 
-0.03 to 0.12, the positive values belonging to the shortest-wave disturbances a t  
given q. As with the axisymmetric mode, the growth rates of this asymmetric mode 
decay at large Reynolds numbers. beginning to do so, however, a t  much lower 
Reynolds numbers. The unstable eigenvalue at  fixed q and a but with Reynolds 
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Re 0 

lo2 0.017279940+i8.996067 x 
lo3 0.023462141+i9.790436 x 
lo4 0.023453266+i9.192278 x 
lo5 0.023453788+i8.6485 x lo-' 

TABLE 8. Asymmetric primary mode eigenvalue vs. Re at fixed parameter values 
(q = 0.4, a = 0.3). 

N R  

50 100 
75 110 

100 120 
150 140 
200 160 
250 180 
300 200 

TABLE 9. ( 

0 1  

0.0008264638+i0.00391478239 
- 0.002005432 8 + i0.000986 16247 
- 0.002234 1283 + i0.000988908 15 
- 0.002 238 7165 + i0.00098851641 
-0.0022387036 + i0.00098851650 
-0.0022387038 + i0.00098851655 
-0.0022387039 + i0.00098851643 

0 2  

0.000 141 769553 - iO.000 1689329 
- 0.000032 656303 + i0.000232655 1 

0.000035 903 501 + iO.000 265 609 6 
0.000037 01 7 512 + iO.OOO266 179 4 
0.000037010727+i0.000266 188 1 
0.000037010246 + i0.000266 1892 
0.000037010243 + i0.000266 189 7 

:onvergenee of primary and secondary asymmetric mode eigenvalues at q = 0.5, 
a = 0.05, Re = 25 

numbers varying over four orders of magnitude is tabulated in table 8. The real part 
of the eigenvalue again approaches a limit with increasing Re, but the growth rate 
decays somewhat more slowly than l / R e .  This is likely due in part to the fact that 
the Reynolds numbers in question are not as large as those studied in the 
axisymmetric case, lo5 being the upper limit at which accurate computations were 
still feasible. 

Khorrami has described both this and the axisymmetric mode as long-wave 
instabilities, but this characterization should perhaps be refined. The maximum 
growth rates a t  all Reynolds numbers studied here occur at  wavelengths which are 
the same order of magnitude as the radial extent of the viscous core of the vortex. 
No instability was found for wavelengths much shorter than this, but unstable long 
waves exist for both modes of instability, starting at Reynolds numbers less than an 
order of magnitude larger than the critical values. 

In  addition to the instability just described, we have found a family of unstable 
viscous modes for m = 1 which have not been reported previously. These modes are 
truly long wave in character, in that their unstable regions lie very close to the 
a = 0 axis for all Reynolds numbers where instability is found. A convergence history 
of the primary- and secondary-mode eigenvalues is given in table 9. The critical 
Reynolds number for the secondary mode of roughly 20 is only slightly larger than 
that of the primary mode, but the behaviour of the instability with increasing 
Reynolds number is unusual. At Re = 25, the unstable region extends for the swirl 
range 0.4 < q < 1.15 and to a short-wave limit of a = 0.134. A t  Re = 40, the unstable 
region is much smaller, having roughly the same range of unstable 01 but with a range 
of unstable swirl of only 0.22 < q < 0.73. 

The tertiary and higher modes behave much like the secondary mode, except that 
they are unstable for a progressively smaller range of a and each has a maximum 
growth rate which is generally an order of magnitude or more smaller than that of 
the previous one. Plots of the variation with a of the real and complex parts of the 
eigenvalue corresponding to the primary and secondary mode at parameter values of 
q = 0.4, Re = 40 are plotted in figure 12 (the tertiary mode, which is unstable for 
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0.008 

0.004 

0 

0 0.16 0.32 0.48 
a 

FIGURE 12. Real (dashed) and imaginary (solid) part of the m = 1 primary and secondary mode 
eigenvalues vs. a at q = 0.4, Re = 40. 

a < 0.01 and has a maximum growth rate of roughly 2 x lov5, is not visible at  this 
scale). The physical import of these modes, however, should be viewed in the light 
of the fact that the parallel-flow assumption breaks down a t  small a, so a rigorous 
analysis of these very long-wave modes would need to take effects of non-parallelism 
of the basic flow into account. The primary mode, however, being the only one which 
persists to large Reynolds numbers, is of greatest interest, since swirling wakes which 
persist for long periods of time will tend to have low levels of viscosity. 

4. Conclusions 
In addition to yielding the first global pictures of inviscid instabilities of the 

trailing vortex, the results of this study provide the first direct numerical validation 
of the large-azimuthal-wavenumber asymptotic analysis of Leibovich & Stewartson. 
It has been shown that by taking advantage of the increasingly localized structure 
of the disturbance eigenfunctions for large m, accurate results are obtained up to 
azimuthal wavenumbers of 10000 and greater, and the agreement with the 
asymptotic theory is excellent. Not only the most unstable mode, but all of the 
unstable modes which are numerically well-resolved appear to possess growth rates 
which approach a finite value at large m, with the difference between the limiting 
eigenvalue and the eigenvalues a t  finite m vanishing as m-i, and the multiple 
unstable modes coinciding to O(m-i) in this limit. The numerical analysis is accurate 
enough to actually give the exact powers of m of the asymptotics; while an 
asymptotic description has already been established for the current problem, a 
versatile, high-quality numerical approach such as described could be a useful guide 
for the asymptotic theory in future problems of interest. 

A viscous analysis of these fundamentally inviscid modes confirms the fact that 
the m =  1 case has the lowest critical Reynolds number, and the value found of 
Re, = 13.905 is in good agreement with that claimed by Lessen et al., although there 
are some discrepancies in the other critical parameters, particularly in the critical 
swirl, for the cases where comparisons are possible. In  this study, critical parameters 
were found for azimuthal wavenumbers up to m = 10000, revealing that Re, 
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increases roughly as O(m2) for m >> 1, and that the critical values of swirl and scaled 
axial wavenumber approach limiting values as m +a. The behaviour of the critical 
Reynolds number is important, since, although the large-m modes are the most 
unstable in the strictly inviscid sense, they are also shown to be the most susceptible 
to viscous stabilization. 

Additionally, the viscous instabilities recently discovered by Khorrami ( 1991 ) 
have been mapped out in detail, and their behaviour as a function of viscosity is 
investigated, especially in the high-Reynolds-number limit. The critical Reynolds 
number for the axisymmetric mode was found to be 322.42, which is very close to 
that found by Khorrami. The asymmetric mode was found to possess a much lower 
critical Reynolds number of 17.527. For both modes, the extent of the unstable 
region (in swirl-axial wavenumber space) increases rapidly for Reynolds numbers 
increasing beyond their critical values. The unstable regions extend to infinitely long 
waves for Reynolds numbers roughly an order of magnitude larger than critical and 
appear to reach a maximum extent for Re >> Re,, the asymmetric mode doing so more 
quickly than the axisymmetric mode, which continues to extend to smaller and 
smaller swirl values even though the range of unstable wavenumbers for larger swirls 
has reached its maximum. For the m = 1 case, an additional family of long-wave 
instabilities has been shown to exist. 

All computations for this study were performed on RISC-based workstations, 
using 64-bit precision real and 128-bit complex arithmetic. Information regarding 
any of the numerical procedures used will be provided on request. Funding for this 
work was provided by a NASA Graduate Student Researcher fellowship, NASA-G- 
NGT-50545, through Lewis Research Center. 
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